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Condensed phases of Langmuir monolayers are treated in the framework of the Landau theory
of phase transitions as a result of successive ordering of the hexatic phase. All types of ordering
allowed by symmetry and the couplings between them are described. The phase diagrams and x-ray
structural data on monolayers of various long-chain amphiphilic molecules can be explained by using
three coupled order parameters. One of the parameters governs the collective tilt of the molecules,
while the other two describe one-dimensional “weak crystallization” involving herringbone ordering
of the molecular backbone planes along the bond direction and normal to it. Possible manifestations

of other order parameters are discussed.

PACS number(s): 61.50.Ks, 68.10.—m, 68.35.Rh

I. INTRODUCTION

A. Phases of Langmuir monolayers

Transitions between condensed phases of Langmuir
monolayers were first observed as kinks in the sur-
face pressure-area isotherms more than fifty years ago
[1]. Systematic measurements by Stenhagen [2,3] and
Lundquist [4,5] gave rise to the phase diagrams which
have been modified since then only in their fine struc-
ture [6]. Monolayers of different amphiphiles possess very
similar phase diagrams. Although the measurements on
any substance are performed in a limited temperature
range, a generalized phase diagram [6] can be compiled
from isotherm studies of amphiphiles with different chain
lengths by matching up regions of the same shape with
regular shifts of the temperature axis [7]. Two exper-
imental techniques, Brewster angle microscopy [8] and
polarized fluorescence microscopy [9], were used to deter-
mine the phase diagram of fatty acid monolayers repro-
duced in Fig. 1(a). It contains a new transition line which
was not apparent in isotherm measurements. We follow
the Harkins-Stenhagen notation [1-3] of the phases, and
denote by Ov the phase found in [8].

Recent x-ray diffraction experiments [10-19] have
shown that all kinks in the isotherms observed by Sten-
hagen and Lundquist are due to structural phase transi-
tions and all regions of Fig. 1(a) have different structures.
In the high-pressure phases LS, S, and C'S the molecules
are not tilted on average. The LS phase possesses one
broad first-order diffraction peak. The correlation length
determined from the full width at half maximum of the
peak varies from about 20 intermolecular distances at
high temperatures [17] to 5-7 intermolecular distances
near the LS-S transition [14]. Monodomain samples are
not available for x-ray studies and the single peak of the
“powder” sample is interpreted as the triply degenerate
peak of a hexatic phase. The hexatic order in the LS
phase was not observed directly. The sixfold axes of
the domains of the tilted phase L, in coexistence with
the higher-temperature two-dimensional liquid phase L,
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were revealed by fluorescence microscopy [20]. At the LS-
S transition the single peak of the LS-phase splits into
two, one doubly degenerate and one nondegenerate, both
with correlation lengths of about 30 intermolecular dis-
tances. This orthorhombic distortion can be interpreted
as due to the ordering of the short axes (backbone planes)
of the molecules. Although this interpretation is not con-
firmed by experiment since no higher-order peaks were
observed, herringbone order is expected in analogy with
smectic-F liquid crystals [21] and bulk alkanes [22]. The
theory presented below confirms this suggestion. The
other possible variant, nematiclike ordering of the back-
bone planes parallel to each other, contradicts the struc-
tural data ([23]; see also Sec. IIA2). The CS phase
gives the resolution-limited peaks of a two-dimensional
solid. The transitions LS-S and S-C'S are first order, as
was first determined by isotherm measurements and then
confirmed with x-ray diffraction.

As the surface pressure is lowered, transitions occur
to the phases showing collective tilt of the molecules.
The tilting transitions CS-LY, S-L,, LS-L,, and LS-
Ov are found to be continuous. The phase L} possesses
the resolution-limited peaks of a two-dimensional solid
whereas L}, Ly, and Ov are mesophases. The molecules
tilt in the direction toward the nearest neighbor in L,
and LY phases and toward the next-nearest neighbor in
L), and Ov phases, the swiveling transitions being obvi-
ously of the first order. The Ly-Ov transition is much
weaker than the L,-L) transition and was not revealed
by isotherm measurements. It was detected recently by
Brewster angle microscopy [8] and polarized fluorescence
microscopy [9]. The tilt direction in the Ov phase was de-
termined by x-ray diffraction [19]. In the x-ray diffraction
experiments, isotherm scans over the phase sequence S-
L4-L, revealed drastic changes in the correlation lengths
at the L)-L, transition [14]. The correlation lengths for
the two peaks in the L} phase differ only slightly from
those in the S phase, being about 30 intermolecular dis-
tances. In the L, phase, the nondegenerate peak shows
a correlation length of about 60 intermolecular distances
whereas for the doubly degenerate one the correlation
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length is about four times smaller. Essential differences
in the correlation lengths of two peaks were found also for
the monolayers of the longer-chain fatty acids in an un-
compressed state [24,25]. These differences find a natural
explanation in the theory presented below.

T19 (°C)
0 10 20 30 40
T T T T T )
301 (a) s | Ls R
25+ A A A‘:‘ 4 a8 .
: n L. ' A
I 20f . "“A"‘A L, 4 Ov -
Z 15t % at ‘
i . J
e 10+ |_2" C]Cl A 4
5L o 1

FIG. 1. (a) Experimental phase diagram for fatty acid

monolayers from Schwartz and Knobler [9]. Squares refer
to observations of behenic (Cz2) acid, while triangles refer
to arachidic (Ci9) acid (adjusted to overlay the behenic acid
data by adding 10 °C to the temperature). The open symbols
refer to transitions determined only by isotherm features; oth-
ers are from polarized fluorescence microscopy data. To the
original figure we have added, following Ref. [19], the label Ov
for the Overbeck and Maobius phase [8], and an axis along the
top of the figure to indicate the temperatures for C;g acid.
Additionally, the phase S and solid lines for its boundaries
are added according to Refs. [2,3], while the Brewster angle
microscopy data is omitted. (b) Theoretical phase diagram.
F,F' are the temperaturelike variables and A is the surface
pressure-like one. Solid lines denote the first-order transitions,
dashed lines indicate the second-order ones. The phases pre-
sented are the hexatic phase LS, tilted hexatic phases Laq4
and Ov, one-dimensional (1D) crystal phases S, L, and Lap,
and herringbone-ordered 2D crystal phases CS and L%. The
tilted hexatic phases L4 and Ov differ in direction of tilt
with respect to the bonds, while the phases L} and L differ
in both direction of crystallization wave and direction of tilt
with respect to bonds. Greek letters indicate nonzero order
parameters in each phase.
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B. The Landau theory of phase transitions

In the theory of phase transitions proposed by Landau
[26,27], one of the basic ideas is to expand the free en-
ergy as a power series in an order parameter related to
the changes of symmetry at the structural phase transi-
tion. In its rigorous formulation, this idea can be used
to predict the continuous (second-order) phase transfor-
mations which can occur for a given symmetry of the
more symmetrical phase. A number of approximations,
verified on different systems, have been proposed to ex-
tend its applicability (see, e.g., [28] for a review). First-
order transitions are widely treated using Landau free en-
ergy expansions, with reasonable accuracy provided the
discontinuities at the transitions are small. The phase
transitions in liquid crystals are an appropriate example.
Successive phase transitions can also be considered, with
reduced accuracy, using free energy expansions based on
the symmetry of the most symmetrical phase.

Landau specifically considered the crystallization
phase transition, for which he took the amplitude of the
density wave as the order parameter [27]. He showed
that the crystallization transition is first order. His idea
was developed further in the “weak crystallization” the-
ory which comnsiders, in the framework of the Landau
free energy expansion, the formation of different crys-
talline structures (see, e.g., [29] for a recent review).
This theory assumes that the wave vectors participat-
ing in crystallization have equal lengths and the dis-
continuities at the transition are small. Both require-
ments are met, for example, at the nematic-smectic phase
transition (one-dimensional crystallization over a den-
sity wave) and for formation of the blue phase of liquid
crystals (three-dimensional crystallization over a tensor
quantity). Waves of vector or tensor components can lead
to second-order transitions for symmetry reasons. Anti-
ferroelectric ordering of transverse dipoles is an example.

The aim of the present work is to consider, in the
framework of the Landau theory, the whole set of transi-
tions between condensed phases of Langmuir monolayers.
Hexatic symmetry is assumed for the most symmetrical
condensed phase LS. A free energy expansion based on
hexatic symmetry is applied to the whole phase diagram
of Fig. 1(a), since all observed transitions occur over a
temperature range of less than 20°C. Both hexatic-to-
hexatic and crystallization transitions are considered.

C. Summary of the results
1. Types of ordering

All types of ordering of the hexatic phase allowed by
its symmetry are listed in Fig. 2. Of these eight, the top
four [Figs. 2(a)—(d)] give rise to phases preserving the
continuous translational order of the hexatic phase. Al-
though they are less symmetrical than the initial hexatic
phase, they are still called “hexatic” phases in order to
emphasize their continuous translational order. Here we
follow Refs. [30,31] where the “tilted hexatic” phase was
considered. The phase 2(a) is characterized by an order
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FIG. 2. All possible ways for ordering of the
two-dimensional hexatic phase: (a)-(d) the phases pos-
sessing continuous translational order (hexatic phases); (e),
(f) phases with one crystallization wave (one-dimensional
crystals); (g), (h) phases with three crystallization waves
(two-dimensional crystals). Broken lines indicate periodic-
ity. Greek letters refer to notation of the order parameters in
the paper.

parameter which is a two-dimensional vector lying in the
plane of the monolayer. One suitable implementation is
the projection of the vector, describing collective tilt, di-
rected along the long axes of the molecules. Another is
the vector oriented parallel to the molecular heads. The
symmetries of both these implementations are the same,
and the presence of one induces the other. We treat this
order in terms of collective tilt of the molecules, which has
been observed in Langmuir monolayers. There are two
preferred directions of tilt, both along symmetry planes
of the hexatic phase. In the first, the tilt is towards
a nearest neighbor (NN) molecule along the bonds, as
shown in the figure. In the second, the tilt is towards a
next-nearest neighbor (NNN), normal to the bonds. An
intermediate tilt direction is also possible.

Figure 2(b) represents the ordering of the short axes
of the molecules parallel to each other. For Langmuir
monolayers, the term “short axes” is used interchange-
ably with “backbone planes,” “zigzag planes,” or “planes
of the carbon skeleton of the molecules.” The backbone
planes can be oriented to the nearest neighbor (as shown
on the figure), to the next-nearest neighbor, or in an in-
termediate direction. Figure 2(c) demonstrates the phase
of chiral molecules which is derived from the hexatic by
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preserving the sixfold symmetry and losing the symme-
try planes. Examples of chiral amphiphiles are fluori-
nated fatty acids [32-34]. At the transition to the phase
of Fig. 2(d) the sixfold symmetry of the hexatic phase
is reduced to threefold symmetry. Two variants of this
phase are possible, depending on the symmetry plane
preserved. The transitions to the phases Fig. 2(c) and
Fig. 2(d) are not found in Langmuir monolayers and we
will not consider them further. The transition from the
hexatic to the phase of Fig. 2(b) is first order, whereas
the phases of Figs. 2(a), 2(c), and 2(d) can appear con-
tinuously (Sec. ITA).

The two-dimensional hexatic phase can crystallize in
two ways, giving rise either to one-dimensional crystalline
order as in Figs. 2(e) and 2(f), or to two-dimensional crys-
tals as in Figs. 2(g) and 2(h). The phase of Fig. 2(g) is
appropriate when the order parameter is the amplitude
of the density wave. The symmetry of the hexatic phase
requires three waves with equal amplitudes, directed at
120° to each other, giving rise to a hexagonal crystal.
The transition from hexatic phase to hexagonal crystal
must be first order, because the density is a scalar quan-
tity which does not change sign on reflection. The trans-
verse component of a vector or tensor provides an order
parameter which changes sign on reflection in the symme-
try plane containing the wave vector. Figures 2(e), 2(f),
and 2(h) demonstrate crystallization over these order pa-
rameters. Both one-dimensional crystallization due to a
single wave, Fig. 2(e) and Fig. 2(f), and two-dimensional
crystallization due to three waves with equal amplitudes,
Fig. 2(h), are possible, and all transitions can be contin-
uous. The order within the rows of molecules in phases
Fig. 2(e) and Fig. 2(f) is liquidlike. The phases Fig. 2(e)
and Fig. 2(f) differ from each other in the direction of
the wave vector of the crystallization wave to the nearest
neighbor of Fig. 2(f) or to the next-nearest neighbor of
Fig. 2(g). The antiferroelectric type of ordering of a vec-
tor and the herringbone type of ordering of a tensor (the
latter is presented on the figure) are both described by
these waves and, moreover, always accompany each other
(see Sec. IIB2). In Langmuir monolayers, herringbone
ordering is expected by analogy with smectic-E phases
[21] and bulk alkanes [22], so that we discuss these phases
in terms of herringbone order.

Although the phases of Fig. 2(e) and Fig. 2(f) are very
similar, their diffraction patterns differ. In Fig. 2(e), the
bonds do not lie in the crystalline rows. This gives broad
first-order diffraction peaks, reflecting the liquid-like or-
der. In contrast, the diffraction pattern of the phase Fig.
2(f) shows one narrow peak due to diffraction from the
crystalline rows, while the doubly degenerate peak caused
by the short-range translational order within the rows is
broad. Comparing these results with the experimental
data on the diffraction peak widths, we can attribute the
phase of Fig. 2(e) to the phases S and L, of Langmuir
monolayers possessing first-order peaks of approximately
equal widths whereas Fig. 2(f) corresponds to the phase
Ly with considerably different peak widths. The phase
Fig. 2(h) is a two-dimensional crystal with four molecules
per unit cell. It has not been found in Langmuir mono-
layers.
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2. Theoretical phase diagram

The theoretical phase diagram of the present paper,
Fig. 1(b), is constructed to satisfy simultaneously the
symmetry requirements of the Landau free energy ex-
pansion and the experimental data, both thermodynamic
and structural. The nomenclature of the observed phases
is preserved; the phase L, is subdivided, for symmetry
reasons, into two phases, Log and Lyj. All features of the
theoretical phase diagram are derived from the unique
free energy expansion invariant with respect to the hex-
atic symmetry of the most symmetrical phase, LS. The
ordering of the backbone planes of the molecules is con-
sidered to occur with decreasing temperature, whereas
the tilting transitions are due to decreasing surface pres-
sure, as found in experiments.

The transitions LS-Lyy and LS-Ov are transitions
from the hexatic to “tilted hexatic” phases possessing
different tilt directions. Both tilted phases have con-
tinuous translational symmetry. For the transition LS-
S, revealed experimentally by an orthorhombic distor-
tion, symmetry arguments allow two possibilities, nemat-
iclike ordering of the backbone planes, Fig. 2(b), and
one-dimensional crystallization, Fig. 2(e). The phase of
Fig. 2(f) can be ruled out since the first-order diffrac-
tion peaks remain broad in phase S. Nematiclike order-
ing provides a suitable description of the corresponding
part of the phase diagram with phases LS, S, L}, and
Lyg4, but does not fit the structural data ([23]; see also
Sec. ITA2). In brief, it is observed experimentally that
the tilt in phase Lyg induces weak (proportional to the
square of the tilt angle) nematic order with the backbone
planes oriented in the same direction as the tilt, i.e., to-
ward the nearest neighbor. The spontaneous ordering at
the LS-S transition also orients the backbone planes in
the NN direction, as shown in Fig. 2(b). Then the tilt
at the S-L), transition is expected to be in the same di-
rection, contrary to the observations of NNN tilt in the
phase L,. Hence the one-dimensional crystal phase of
Fig. 2(e) remains the only candidate for the symmetry of
the S phase. Its coupling with the tilt satisfies both the
thermodynamic and the structural data for the phases
LS, S, L}, and Lyg4, and transitions between them (Sec.
II1C).

The transition S-C'S is due to the appearance, at some
temperature below the LS-S transition, of the crystal-
lization wave shown in Fig. 2(f). The phase CS, which
possesses two crystallization waves with orthogonal wave
vectors, is a two-dimensional crystal. As the surface pres-
sure is lowered at a temperature corresponding to the
S phase, the increasing tilt angle acts similarly to the
decreasing temperature, switching on the crystallization
wave of Fig. 2(f) at the L5-Loj, transition. The tilt direc-
tion changes at the transition, which cause the S-phase
order parameter to disappear. The phase Lsj also pos-
sesses one-dimensional crystalline order, differing from
that of the L), phase in its directions of tilt and crystal-
lization.

The transition C'S-L} is the tilting transition in a two-
dimensional crystal. In the framework of the unified free
energy expansion invariant with respect to symmetry of
the hexatic phase, the lines of the tilting transitions LS-

Ov, LS-Ls4, S-L,, and CS-L} are almost parallel and
shift with respect to each other when crossed by the lines
of the first-order transitions LS-S and S-C'S. The po-
sitions of the phase transition lines are discussed in Sec.
III. The lowest-order terms of the free energy expansion
are considered to be temperature and surface pressure
dependent, whereas all other coefficients are taken to be
constants, as in the standard approach to Landau the-
ory. This assumption is valid in the vicinity of a transi-
tion line, but cannot be applied for quantitative analysis
over a finite range of the external variables. Variations
of the higher-order coefficients can continuously distort
the phase diagram. However, this does not change the
conclusions about the topology of the phase diagram or
the structure of the phases.

The present theory employs one and the same free en-
ergy expansion for a whole range of temperatures and
surface pressures. In this way, the phase diagram con-
taining seven observed phases is explained by the cou-
pling of just three order parameters. There remain slight
ambiguities related to the presence of first-order transi-
tions. In particular, comparison of the diffraction data
with bulk crystal structures might suggest that the back-
bone planes in the phase Ly, are parallel to each other,
without herringbone order. In this case the phases Lag
and La; would possess the same symmetry, thus explain-
ing the absence of the Ly4-Loyp transition from the ex-
perimental phase diagram. An adequate theoretical de-
scription here of the structural data requires higher-order
terms, making the results much less definite (see Sec. IV).
To avoid these difficulties, we limit ourselves to the phase
diagram of Fig. 1(b) which involves only the lowest-order
terms in the free energy expansion over the present order
parameters.

II. PHASE TRANSITIONS FROM THE HEXATIC
PHASE

A. Hexatic-to-hexatic transitions
1. Tilting

The most symmetrical phase of the present theory, the
hexatic phase, is assumed to possess continuous transla-
tional order, as in a liquid, and discrete orientational or-
der of the point symmetry group Cs, generated by a six-
fold symmetry axis and two orthogonal symmetry planes
normal to the plane of the monolayer. In Sec. IT A we con-
sider transitions decreasing orientational symmetry and
preserving continuous translations. The resulting phases
are called “hexatic” in order to stress that these phases
remain anisotropic liquids, as the initial hexatic phase.
Let us consider first the “tilted hexatic” phase appearing
due to the collective tilt of the molecules.

Introducing the unit vector m along the mean direc-
tion of the long axes of the molecules, one can consider
its components 7n;,n, in the plane of the monolayer to
be a two-dimensional order parameter describing the col-
lective tilt of the molecules. It is convenient to convert
to polar coordinates 7, 3:
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ng =1ncosf3, ny, =nsinpf. (1)

Here 3 is the azimuthal angle of the collective tilt and
1 = sinf, where 0 is the tilt angle. One has n = 0 in
the phase of untilted molecules and 1 # 0 for collective
tilt. The sixfold rotation transforms the azimuthal angle
according to 8 — [ + /3, and the reflections in the
orthogonal symmetry planes give rise to 8 — —( and
B — m — B. The expansion of the free energy invariant
with respect to these transformations is

®, = An® + Bn* — Dn®cos 68 + En'?cos126.  (2)

The first two terms in Eq. (2) are sufficient to describe the
second-order phase transition at A = 0, provided B > 0:
for A > 0, the minimum of the free energy is achieved
at 7 = 0; as A changes sign, the minimum continuously
shifts to n2 = —A/2B.

The last two terms in Eq. (2), small in comparison
with the first ones, are the lowest-order terms depend-
ing on the tilt azimuth 8. They are included in the free
energy expansion (2) owing to degeneracy of the fourth-
order term with respect to 8. Polar coordinates (1) pro-
vide a compact notation for the anisotropic terms. They
can be expanded if necessary in terms of the compo-
nents ng,n, of the order parameter by expressing cos 63
and cos 123 as mixed homogeneous polynomials in sin 3
and cos 8. For example, the term 7°cos68 is equal to
(n2 — n2)[(n2 — n2)? — 12n2nZ]. The polar coordinate
notation makes the sixfold symmetry of the expression
much more evident. For D > 0, minimization of ®, over
B gives B = wm/3 (m is integer), i.e., NN tilt occurs. If
D < 0, the minimum is achieved at 8 = 7/6+7m/3, i.e.,
for NNN tilt. As D varies from positive to negative val-
ues, the last term in Eq. (2) becomes comparable with the
lower-order one. If E < 0, the first-order transition NN
— NNN occurs at D = 0. If E > 0, the tilt azimuth takes
on intermediate values 0 < 8 < 7w /3 (I phase) over the
range |D| < 4En® with second-order phase transitions
NN — I — NNN at each end. The transitions between
tilted phases were analyzed in detail by Selinger and Nel-
son [35,36] taking fluctuations into account. It was shown
that, over a certain range of the coefficients, both D and
FE tend to zero on renormalization to macroscopic scale.
This introduces an “unlocked tilted phase” to the phase
diagram. The two tilted hexatic phases observed in fatty
acid monolayers, labeled L, and Ov in Fig. 1(a), possess
NN and NNN tilt, respectively, and the free energy ex-
pansion (2) with £ < 0 describes both of them, giving
the L, phase for D > 0 and the Ov phase for D < 0.

2. Ordering of the backbone planes

Consider now the ordering of the backbone planes
(short axes) of the molecules, as shown in Fig. 2(b).
When the molecules order in this way, the first-order
diffraction peak of the hexatic phase splits to two peaks,
reflecting “long” and “short” distances between neighbor
molecules. In describing x-ray diffraction experiments,
the splitting is usually referred to as a distortion of the

unit cell. Although the term “unit cell” cannot be rigor-
ously applied to noncrystalline phases, it provides a clear
description of the diffraction data. For example, one can
characterize the phase of Fig. 2(b) as an expansion of the
unit cell in the NN direction. This terminology does not
cause any misunderstanding and we shall use it further
on.

More rigorously, the phase of Fig. 2(b) is due to the
in-plane nematic ordering of the backbone planes. The
order is described by the director N — the vector in the
plane of the monolayer parallel to the backbone plane ori-
entation, N and —NN being equivalent. The last state-
ment distinguishes the director from the tilt vector n
considered above. Following the standard description of
the nematic phases [37], one can introduce the nematic
order parameter Q — a symmetrical 2D traceless tensor
with components Q;; = N;N; — 16;; (i,j = 1,2). This
tensor plays the same role here as the strain tensor in
crystalline phases, thus justifying the terminology dis-
cussed above. The two independent components of the
traceless 2D tensor @ can be represented in polar coor-
dinates:

Qoo — Qyy =& cosa, 2Qzy =¢sina. (3)

The case £ = 0 corresponds to the hexagonal symme-
try of the LS phase whereas £ # 0 gives phases with
distorted unit cells. One has a = 0 when the nematic
director points along the bonds (or the unit cell stretches
to the NN) and a = 7 when the director is perpendicular
to the bonds (or the unit cell stretches to the NNN). On
rotation of the monolayer through the angle m/3 the com-
ponents (3) of the second-rank tensor are transformed by
two rotation matrices according to @ — a + 2w /3. The
free energy expansion invariant with respect to the sixfold
rotation and the reflections in symmetry planes (which
transform o = —a) is

¢ = C¢* — K€% cos3a + LE*. (4)

When the third-order term is simplified by expanding
cos 3a as a homogeneous polynomial in powers of sina
and cos a, it becomes (Qoe — Qyy)[(Quzz — Qyy)* —12Q2, .
Substitution of the tensor components Q;; by a diad n;n;
reduces this term to the term 7® cos 63 in Eq. (6).

The presence of the third-order term in Eq. (4) leads
to a first-order phase transition of the order parameter
£ [38]: the free energy (4) has two local minima, £ = 0
and £ # 0, and as F' changes a transition occurs when
the minimum at £ # 0 becomes deeper. The minimum
with respect to the angle & occurs at « = 0 for K > 0
and at « = 7w for K < 0 (equivalent angles differing
from the stated ones by 27m /3 are not mentioned here-
after for the sake of simplicity). More accurately, taking
into account the a-dependent term of next highest order
K'£8 cos 6a in the free energy expansion, there is a first-
order transition from o = 0 to & = m when K’ < 0 and
K changes from positive to negative values. Both phases
possess orthorhombic symmetry, and the unit cell either
stretches or shrinks, respectively, in the NN direction.
On the other hand, if K’ > 0, these phases are linked by
second-order phase transitions at K = +4K'¢3. In the
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intermediate phase a varies continuously, and the unit
cell has monoclinic symmetry.

The coupling between £ and the order parameter 7
responsible for the tilt is due to the lowest-order term

®epy = —Vén? cos(a — 203), (5)

which is invariant with respect to sixfold rotation (trans-
forming a —» a + 27/3,8 — B + w/3) and reflection
(¢ » —a,8 — —p). At temperatures above the tran-
sition over £ the tilt induces distortions: the minimum
of the first term of Eq. (4) together with Eq. (5) gives
& ~ n?. The sign in Eq. (5) is chosen so that at V > 0
the NN tilt with 8 = 0 causes the unit cell to stretch
along the bonds, @ = 0, as is observed at the LS-L,
transition in fatty acids.

The manifestation of the LS-S transition in the diffrac-
tion experiments is orthorhombic distortion with the
stretch of the cell to the NN (i.e., @« = 0). However,
the description of this transition as a spontaneous order-
ing of the backbone planes with the free energy (4) is not
consistent with the structural data [23]. If the phase S
is formed by the transition over £ and the observed dis-
tortion direction o = 0 is due to a minimum of Eq. (4)
with K > 0, then the tilt direction at the transition S-L}
given by Eq. (5) is 8 = 0, since V > 0 as was derived
above from the direction of the induced distortions at the
LS-L, transition. However, the observed tilt in the L}
phase is in the NNN direction (8 = =w/2). The phase
diagram of fatty alcohols and corresponding diffraction
data [18] also cannot be explained with a transition over
¢ between LS and S phases [23]. Fatty alcohols possess
only NNN tilt, so that the whole region of L, and L}
phases is revealed in the diffraction experiment as a sin-
gle phase. (Recently, Lawrie and Barnes [39] found, by
means of isotherm measurements, a phase transition line
inside the tilted phase of a fatty alcohol. It is treated sim-
ilarly to the transition inside the L} phase of fatty acids
[6], also found by isotherm studies and not revealed in
diffraction experiments.) The tilting transition from the
LS phase can be described by Eq. (2) with D < 0, giving
B = m/2. The unit cell is observed to stretch in the tilt
direction (o = ), which is described by Eq. (5) with
V > 0. At the LS-S transition, the unit cell stretches
to the NN (a = 0), in the same direction as in the fatty
acids. In this case the coupling term (5) with V' > 0 as
already determined requires NN tilt at the tilting tran-
sition from the S phase. In contradiction to this, NNN
tilt is observed. It is shown below in Sec. IIC that the
distortion £ in phase S of both fatty acids and alcohols is
induced by the other primary order parameter, describ-
ing herringbone ordering of the backbone planes.

3. Chirality

Examples of chiral amphiphiles which form Langmuir
monolayers are the fluorinated fatty acids [32-34]. Al-
though the transition shown in Fig. 2(c) from a nonchiral
to a chiral phase has not yet been observed, we describe
briefly, for the sake of completeness, its main features.
The order parameter x for the chirality phase transition

is a pseudoscalar changing sign on reflections and invari-
ant with respect to rotations. The cubic term in the free
energy expansion over the powers of x is forbidden by
the reflection symmetry, so that the expansion

&, =ax® +bx* (6)

allows a continuous transition at a = 0.
The coupling with the order parameters n and £ intro-
duced above is due to the terms

Pyne = exn® sin 68 + dx&3 sin 3a. (7)

The multipliers of each term of Eq. (7) do not change
on 60° rotation whereas on reflection both x and sine
terms change sign, so that the right-hand side of Eq.
(7) is invariant with respect to symmetry of the hexatic
phase. Equation (7) is linear over x, and, taking into
account the quadratic term of Eq. (6), one finds that the
nonzero chirality x = (¢/2a)n®sin 63 + (d/2a)£3 sin 3« is
induced by tilt n or distortion £, provided that both tilt
and distortion occur in a direction intermediate between
NN and NNN.

One has to distinguish this case of induced chirality
from the transition over x occurring when the coefficient
a in Eq. (6) becomes negative. Induced chirality is a
secondary effect when the direction of tilt or distortion
varies, and y-dependent terms can be excluded from the
free energy expansion by minimizing first over x. Our
approach here disagrees with that of Selinger et al. [40]
where the difference between induced and spontaneous
chirality was not taken into consideration.

The transition from sixfold to threefold symmetry, Fig.
2(d), is not realized in Langmuir monolayers, but can be
expected for monolayers of molecules with threefold sym-
metry, like NH3. A single-component order parameter
describing the transition changes sign on 60° rotation,
so that the cubic term is absent in the free energy ex-
pansion and the transition can be continuous. There are
two possible transitions, differing in the symmetry plane
retained.

The transitions considered above, Figs. 2(a)-2(d), in-
clude all different representations of the point symmetry
group Cg, of the hexatic phase and thus exhaust the list
of possible ways of ordering of the hexatic phase preserv-
ing continuous translational symmetry.

B. Crystallization transitions
1. Density waves

Crystallization of a liquid or hexatic phase consists
in the appearance of periodic spatial variations in the
density function. “Weak crystallization” theory assumes
that in the Fourier expansion of the density function
all essential terms u; exp(ik; - ») have equal lengths of
the wave vectors [27]. Since the experimentally observed
phases possess at least orthorhombic symmetry, we can
restrict ourselves to k vectors lying in the symmetry
planes. By successive application of sixfold rotation Cg
to a wave vector, six wave vectors kj;, = Cgk; are seen
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to participate in crystallization. The order parameter
has six components u; and, since the density function
>, ujexp(ik; - r) must always be real, it follows that
uj+s = uj. It is convenient to designate

i i i
up = p1e’™, up = pae’?, uz = p3ze’™,

T e A
ug = p1e” ", us = paeT*?, ug = pze 3. (8)

The only invariant terms in the free energy expansion
over the corresponding order parameters u; are those
combinations of the u;’s with k vectors constituting a
closed polygon (3°; k; = 0). Then the free energy ex-
pansion is

&, = P(urug + ugus + uzug) + Q(urusus + usugug)
+R('U.1’U,4 + UgUs —+ U3U6)2
+8(uiuf + ujud + ufud). (9)

Taking into account Eq. (8), one reduces Eq. (9) to

®, = Pp? + Qpip2p3 cos(v1 + 72 + 73)
+Rp* + S(pt + p3 + p3), (10)

where p? = p2 + pZ + p2. The fourth-order terms must
be positive definite, in order to ensure stability of the
ordered phase; otherwise, higher-order terms should be
included in the expansion. The presence of the cubic
term in Eq. (10) means that the transition is first order.
Equation (10) can be minimized first over the phases ~;
of the density waves. Negative Q gives y; + v2 +v3 = 0,
which leads to the hexagonal crystal structure. For pos-
itive Q one has, with v, + 2 + 3 = 7, a complementary
structure with density minima on the sites of the hexag-
onal lattice, which is unlikely to occur experimentally.
Let us now minimize Eq. (10) over p?, keeping the ratios
i; = p;/p constant. For sufficiently large P, the absolute
minimum is the one at p = 0. As P decreases beyond

_1 (Quapaps)?
4R+ S(ui + p3 +p3)’

(11)

the minimum at p # 0 becomes deeper. Then the phase
transition is realized for the ratios {x;} which maximize
the right-hand side of Eq. (11). To find the maximum,
it is convenient to proceed to spherical coordinates in a
three-dimensional space of variables {x;}. The maximum
is achieved at p; = py = ps, i.e., resulting in crystalliza-
tion with three waves of equal amplitude, p; = p2 = p3,
and hence a hexagonal 2D crystal, Fig. 2(g).

2. Herringbone ordering

The amplitude of the density wave is not the only
possible order parameter responsible for crystallization.
Consider the transformation of the order parameter on
reflection in the symmetry plane containing the wave vec-
tor. The order parameter can either remain unchanged,
like the density, or change sign. Examples of the latter
type are the xy component of a symmetrical tensor, Fig.
3(a), or a transverse vector, Fig. 3(c). Since all other
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FIG. 3. One-dimensional crystallization with herringbone
order (a), antiferroelectric order (c), and a mixed case (b).

symmetry elements transform the wave to other ones, all
order parameters can be classified as symmetric or anti-
symmetric with respect to the reflection. The structures
of Figs. 3(a) and 3(c) are equivalent and, moreover, al-
ways accompany each other, as shown in Fig. 3(b). One
can see from Fig. 3 that the density is also periodic for
these structures. However, in contrast to the crystalliza-
tion mediated by the density waves considered in the pre-
vious section, the density here is induced by the primary
wave and its amplitude is proportional to the square of
the order parameter (see Sec. IIC).

Sixfold rotation produces six wave vector k;, in exactly
the same way as in the previous section, and the complex
amplitudes of the waves ¢; form a six-component order
parameter. Since the sum ). ¢; exp(ik; - 7) represents
a real quantity, one has ¢;+3 = ¢; and, similarly to Eq.
(8),

b1 = 01", ¢y = p2e"2, P53 = p3e*,
ba = pre” % s = e, g = pze ™. (12)

The free energy expansion over the powers of ¢; does
not contain a third-order term since it changes sign on
reflection. Then one has, instead of Eq. (10),

8, = Fp? + G19* + Ga2(9 + ¢ + 3), (13)

where p? = @2 +p2+2. If p? is kept fixed, the minimum
of (13) with respect to the components ¢; depends on
the sign of G2. For Gz > 0 one has ¢; = 2 = 3.
The ordered phase is a 2D hexagonal crystal with two
molecules per unit cell, Fig. 2(h). This phase is chiral
(see Sec. IIC).

When G2 < 0, the hexagonal symmetry is broken:
1 = ¢, and Y3 = @3 = 0, meaning that crystallization
occurs only in one dimension. The ordered phase con-
sists of equidistantly spaced rows of the molecules, with
the order parameter alternating from one row to the next.
Within a row, the molecules possess liquidlike order. The
order parameter ¢ describes either antiferroelectric or-
dering of transverse vectors of the molecules, Fig. 2(c),
or alternating orientations of the 2D nematic director,
Fig. 2(a). The latter case corresponds to the herringbone
order commonly encountered in ordered smectic liquid
crystals [21] as well as in 3D packings of aliphatic chain
derivatives [22]. It is illustrated in Figs. 2(e) and 2(f) for
crystallization directions parallel and normal to the bond
direction. The dashed lines indicate periodicity, and the
order within the crystalline rows is liquidlike.

The phases shown in Figs. 2(e) and 2(f) give rise to dif-
ferent low-order diffraction peaks. In Fig. 2(e), the bonds
do not lie in the crystalline rows. This gives broad first-
order diffraction peaks, reflecting the liquidlike order. In
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contrast, the diffraction pattern of the phase shown in
Fig. 2(f) shows one narrow peak due to diffraction from
the crystalline rows, while the doubly degenerate peak
caused by the short-range translational order within the
rows is broad. Comparing these results with the exper-
imental data on the diffraction peak widths, we can at-
tribute Fig. 2(e) to the phases S and L), whereas Fig.
2(f) corresponds to the phase Lyj possessing consider-
ably different widths of the peaks. Clearly, one crystal-
lization order parameter is inadequate, and it is necessary
to deal with order parameters describing the transitions
to phases with mutually orthogonal directions of crystal-
lization.

We keep the letter ¢ for the order parameter of the
phase shown in Fig. 2(e). For one crystallization wave
(p1 = ¢, p2 = p3 = 0) Eq. (13) reduces to

@, = Fp? — Go* + Hp®, (14)

where G = —(G1 + G3). We take the fourth-order term
to be negative, since the transition LS-S is first order.
Then the sixth-order term is added to the expansion (14)
to ensure the stability of the ordered phase. The term is
due to the sum of the invariants

Hi¢® + Ha9 (01 + 93 + ¢3) + Hapl9303,

which reduces, for one crystallization wave (¢ = ¢, p2 =
w3 = 0), to Eq. (14) with H = H; + H, + H3. To make
the transition LS-S in Langmuir monolayers first order,
we take the coefficients F, G, H to be positive. The co-
efficient F' is considered to be temperature dependent
whereas G and H are taken to be constant. As F' de-
creases to the value Fy = G%/4H, a first-order transition
occurs from ¢ = 0 to ¢ = o with @2 = G/2H. The
transition from the hexatic phase to the phase shown in
Fig. 2(f) is described by the order parameter 1) possessing
the same symmetry and the same free energy expansion,

&y = F'y? — G'y* + H'¢°. (15)

Accordingly, the first-order transition at Fj = G'%/4H’
gives Y2 = G'/2H'.

To analyze the relationship between the waves shown
in Fig. 3 in more detail, let us introduce, in addition
to the order parameter ¢ for the wave of herringbone
order of Fig. 2(a), the order parameter P; — the am-
plitude of a transverse vector (which can be referred to
as polarization). The sixfold rotation Cg generates six
waves with the wave vectors k; 11 = Ce¢k; and ampli-
tudes Pj11 = CgP;. The twofold rotation C; = (Cs)?
changes the signs of both wave vector and polarization
vector. Then the requirement that total polarization
>_; Piexp(ik; - 7) is a real quantity gives Pj 3 = —P;.
The coupling between the waves of the herringbone or-
der parameter ¢; and the polarization P; with equal wave
vectors is due to the bilinear combination

($1Ps + $aPr) + (¢2P5 + ¢5P2) + (¢p3Ps + ¢peP3) (16)

which is invariant with respect to symmetry of the hex-
atic phase. For one crystallization wave (1 = ¢, p2 =

w3 = 0) Eq. (16) reduces to
pesin(é — w), (17)

where P; = pexp(iw). The contribution of the invariant

(17) to the free energy is minimum at w = 6§ £ 7, i.e,
the wave of polarization is shifted to ;i of the period with
respect to the wave of herringbone order, as shown in
Fig. 3(b). Since the invariant is bilinear, the two order
parameters are equally critical to the transition. Mini-
mizing Eq. (17) together with the quadratic terms ¢? and
p? in the free energy expansion, one finds a linear com-
bination of ¢ and p which is the actual order parameter

in the presence of both waves.

C. Coupling of the order parameters

Consider the coupling of the crystallization order pa-
rameter ¢ with the order parameters n and £ describing
the collective tilt of the molecules and the distortion of
the unit cell, respectively. The invariant term should
be at least second order over ¢, to ensure the condition
>_;kj = 0. Recalling that sixfold rotation transforms
a — a + 27 /3, one constructs the invariant

Q¢ = —Ulp104€ cos a + ¢pas€ cos(a + 27/3)
+¢3def cos(a + 47/3)], (18)

where the negative sign of the whole expression is chosen
to be convenient for further calculations. For three equal
crystallization waves @1 = @2 = @3 one has &, = 0,
since the hexagonal symmetry is not perturbed. For one
crystallization wave ¢, = @, @2 = @3 = 0 one arrives at

¢ = —Up*€cosa. (19)

Taking into account the term C¢2 of Eq. (4) with positive
C, one concludes that crystallization induces distortions
£ = (U/2C)p?. With U > 0 one has a = 0, i.e., stretch-
ing to nearest neighbors, as observed experimentally in
phase S.

Coupling with the tilt order parameter 7 is described
by a similar anisotropic invariant,

@, = J[p16an” cos 28 + p2¢sn? cos(28 + 2m/3)
+3den® cos(28 + 4m/3)].  (20)

There exists also the product of invariants I¢?n? which
is of the same order as Eq. (20). For one crystallization
wave, the final expression is

D, = Ip?n* + Jp?n? cos 23. (21)

The anisotropic term of Eq. (21) becomes essential at the
tilting transition in the phase ¢ # 0: it has lower order
than the anisotropic terms in the expansion (2) over the
powers of 77 and determines the tilt direction. For J > 0
one has 8 = =w/2, i.e., NNN tilt, as is observed at the
S-L), transition in fatty acids.

Phase transitions in fatty alcohols [18] can be explained
with the same signs of the coefficients in the free energy
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expansion if one only takes negative D in Eq. (2) for the
LS-L; transition [23]. In this case the tilting transition
from the LS phase causes NNN tilt (8 = w/2). The
coupling (5) with V' > 0 gives o = m, i.e., the unit cell
stretches in the tilt direction, as is observed. The term
(19) with U > 0 causes the unit cell to stretch in the NN
direction at the LS-S transition, in accordance with ex-
periment. The tilt direction for the transition from the S
phase is governed by the coupling (21), giving NNN tilt
for J > 0. Thus the difference in behavior of the mono-
layers of fatty acids and alcohols is explained merely by
the opposite sign of D. In the same way as for the fatty
acids, the present theory subdivides the tilted phase of
fatty alcohols into two phases possessing different sym-
metries, herringbone-ordered and disordered ones.

The couplings of the crystallization order parameter
with the tilt » and the distortion £ are similar to Egs.
(19) and (21), giving

@, = Wyp?t cos a, (22)

Dy, = —I'p?n? — J'p?n® cos 2. (23)

The signs of the coefficients are chosen to be conve-
nient in further calculations. In particular, for the tilted
herringbone-ordered phase (¢ # 0,7 # 0) one has with
J' > 0 the tilt azimuth 8 = 0, thus describing the NN
tilt in the Ly; phase.

The periodic wave of herringbone order causes a peri-
odic variation of the density of the molecules, as is clearly
seen in Fig. 3, with the period of the density being half of
the period of the structure. Thus the herringbone order
wave with the wave vector k induces a density wave with
the wave vector 2k. Using the notation of Sec. IIB 1 for
this density wave, one can derive the coupled invariant

D, = M( §u4 + ¢>§u5 + ¢§U6 + ¢421u1 + ¢'§u2 + ¢§u3).
(24)

For one crystallization wave (p1 = @,p2 = @3 = 0) it
reduces to

®,, = Myp?pcos(26 — ), (25)

where p = p;. The free energy is minimized with respect
to p giving p = (|[M|/2P)p? where the first term of Eq.
(10) is taken into account. Thus the herringbone crys-
tallization wave always induces a density wave. It is con-
venient to take the origin at a density maximum, taking
v = 0. With this convention, if M < 0, the minimum of
Eq. (25) is at § = 0, i.e., the maxima of the herringbone
order wave and of the density wave coincide, giving rise
to the phase of Fig. 3(a). In the opposite case M > 0 the
maxima of the herringbone order wave fall on minima
of the density wave, whereas the wave of polarization,
shifted to 1 of the period due to the coupling (17), fol-
lows the density wave. The phase of Fig. 3(c) is realized.
When M changes sign, higher-order terms are important
and the intermediate phase of Fig. 3(b) results.

One can find out from Fig. 2(h) that the hexagonal
crystalline phase caused by three waves ¢; = @3 = @3
is chiral. The chirality x induced by the crystallization

2245

waves is due to the invariant term

X123 cos(d1 + 62 + 83). (26)

Its minimization together with the first term of Eq. (6)
gives chirality x ~ ¢192¢3 which vanishes if at least one
of the amplitudes ¢; is zero. The sense of the chirality
depends on the phases §; of the crystallization waves.

III. PHASE DIAGRAM OF LANGMUIR
MONOLAYERS

The couplings between order parameters listed in Fig.
2 give a large variety of phase diagrams. Our aim is to ex-
plain the experimental phase diagram of the monolayers
of amphiphilic molecules shown in Fig. 1(a). Its theoret-
ical description involves at least three order parameters:
the one governing collective tilt of the molecules and two
others describing the sequence of the three high-pressure
phases LS-S-CS. Three order parameters 7, ¢, and %
provide a suitable set. More complicated descriptions
involving four order parameters are discussed in Sec. IV.

Let us collect all essential terms of the free energy ex-
pansion over powers of 7, ¢, and ¥:

® = An? + Bn* — Dn®cos68 + En'? cos 123
+F<p2 _ G(p4 + H(pﬁ + T<p21/)2
+FI'¢2 _ le‘l + HI,(/)G
+(Ip? = I'Y?*)n® + (J* — J'Y?)n’ cos 28.  (27)

Following the experimental phase diagram, Fig. 1(a), the
coefficients F' and F’ governing the herringbone ordering
transitions are considered to be temperaturelike variables
whereas the coefficient A responsible for the tilting tran-
sition is considered to be a surface-pressure-like one. All
other coefficients in the free energy expansion (27) are
taken to be constants. The second-order phase transi-
tion at the line A = 0 gives tilted hexatic phases L, and
Ov, differing in their tilt azimuth 3. These phases are
separated by a first-order transition at D = 0, provided
E < 0. The condition B > 0 means that the tilting
transitions are continuous.

The herringbone-ordering transition LS-S is a crys-
tallization transition, with the order parameter . At
the line Fo = G2?/4H, the symmetry changes from hex-
atic to that of a 1D crystal. Although the absence of a
third-order term in the free energy expansion means that
the transition could possibly be continuous, the observed
transition is first order, so that G > 0. Similarly, the
second crystallization transition S-C'S over the order pa-
rameter ¥ is also a 1D crystallization. It occurs at a lower
temperature, and its crystallization wave is orthogonal to
the first one.

The tilting transition S-L} occurs in the herringbone-
ordered phase when ¢ # 0. Here, the order in 7 of
the coupling term Jp?n?cos2B is lower than that of
Dn®cos 63, so that the former determines the tilt az-
imuth. The NNN tilt in the L) phase of fatty acids
(8 = m/2) is obtained when J > 0. Similarly, in the
LY phase, the tilt is in the direction which minimizes the
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coupling term (Jp? — J'92)n? cos 23, since both ¢ and
1 are nonzero in the CS phase. The observed NN tilt
(8 = 0) is realized for Jp? < J'2.

The fact that ¢ is nonzero in the S phase also means
that the coupling term J?n? cos 23 influences the posi-
tion of the tilting transition S-L). Taking 8 = /2, the
relevant 7-dependent terms are

(A~ (J = D¢*n* + Bn*. (28)

Then the continuous tilting transition occurs on the line
A = (J —I)¢?. Here ¢ is close to its value at the transi-
tion o = (G/2H)'/? and increases with decreasing tem-
perature. If J > I, the line is shifted to a higher surface
pressure with respect to the line A = 0 of the LS-L, tran-
sition, remaining almost parallel to it. Analogously, the
line of the tilting transition C'S-L} is described by the
equation A = (I +J)p?—(I' + J')9?, since both ¢ and v
are nonzero in the C'S phase and the tilt azimuth 8 =0
as found above. The line is shifted to a lower surface
pressure as observed when (I + J)p? < (I’ + J" )2

The transition over 1, realized as the S-CS transi-
tion when the temperature decreases, can also be forced
by increasing tilt angle at higher temperatures. In ad-
dition to its minimum at (¢ # 0,9 = 0), the free en-
ergy in the L} phase has a second local minimum at
(p = 0,9 # 0), since the transition over i occurs at
slightly lower temperature. As the tilt angle increases,
the latter minimum can become deeper. If the order pa-
rameter i were nonzero, the coupling (23) would give
B = 0 for J* > 0 and would reduce F’ in Eq. (15) to
F' = F' — (J' + I'N'n?.
F' reaches the value F}, and the free energy in the local
minimum at (¢ = 0,9 # 0,3 = 0) becomes negative. In-
creasing 7 further makes this minimum deeper than the
minimum at (¢ # 0,4 = 0,8 = 7/2). The observed
simultaneous change of the tilt direction and the corre-
lation lengths at the swiveling transition L)-L,p is thus
explained.

Thus, the phase diagram containing eight phases of
different symmetry is explained by the coupling of three
order parameters. One is responsible for collective tilt
of the molecules, and the other two for one-dimensional
weak crystallization involving herringbone ordering of
the backbone planes. The free energy expansion (27)
involves only the lowest-order terms responsible for the
transitions. The present treatment is one of the simplest,
but is not unique. Other possible variants, involving ad-
ditional order parameters, are discussed in Sec. IV.

As the tilt angle n increases,

IV. DISCUSSION

The Landau free energy expansion provides a macro-
scopic description of the phase transitions in monolayers
in the mean-field approximation. In this section we com-
pare the present approach with molecular models and
fluctuation theories of monolayers. The phases of Lang-
muir monolayers which are not contained in the phase
diagram of Fig. 1 and their possible descriptions in the
Landau theory are also considered. Finally, the possi-

bility is explored that the phase diagram of Fig. 1 can
also be explained in the framework of the Landau theory
using other sets of order parameters.

Molecular models relate features of a transition to an
interatomic interaction potential and provide a more de-
tailed description of a particular transition than the Lan-
dau theory. Separate models have been proposed for tilt-
ing and herringbone-ordering transitions in monolayer
systems. The driving force for the tilting transition is
the possibility of preserving an equilibrium mean dis-
tance between rodlike molecules when the surface area
per molecule is increased [41]. The interaction energy
of the rodlike molecules, proportional to the length of
the molecules, is dominated by the long-range van der
Waals attraction between hydrocarbon chains and their
short-range repulsion. There exists some distance be-
tween the rods where the attraction and the repulsion
balance each other. When the distance between heads of
the molecules attached to the water surface is increased,
the equilibrium distance can be preserved if the molecules
tilt, which allows the cross section normal to the long axes
of the molecules to remain hexagonal close packed.

The arguments of this extremely simplified scheme re-
main qualitatively valid when one takes into account the
interaction between molecular heads, together with sur-
face and entropy effects. In particular, the energy dif-
ference between NN- and NNN-tilted states of the tilted
hexatic phase is a surface effect (independent of molecu-
lar length). It is expected to be very weak since it con-
tributes only to the sixth-order term in the free energy
expansion. Experimentally, the transition L.-Ov from
NN to NNN tilt is too weak to be revealed by isotherm
measurements and has been found only recently using mi-
croscopic techniques [8,9]. This picture agrees with the
results of molecular dynamics simulations for the tilting
phase transition [42-44]. It was shown that the cross-
sectional area remains constant when the surface area
per molecule is increased [42]. The tilt azimuth found
in [43] was not well defined for small tilt angles. NNN
and NN tilt were found for even and odd members of the
homologous series of perfluorinated amphiphiles [44], re-
spectively. The model intermolecular potential employed
in [41] leads to the existence of a low-order term depend-
ing on the tilt azimuth. It can be concluded that this
overestimates the azimuthal anisotropy. Comparison of
the phase diagrams for amphiphiles with different chain
lengths and different head groups provides experimental
data for more detailed analysis [45].

No molecular model of the herringbone-ordering tran-
sition has been developed specifically for Langmuir mono-
layers. However, another monolayer system possessing
the same degree of freedom, adsorbed monolayers of N,
or Hy molecules, has been considered with appropriate
models [46-50]. The molecular interactions were modeled
with a potential of the quadrupole-quadrupole type. The
mean-field approximation predicts a continuous transi-
tion [47,48]. Cluster-variational methods [49] also pre-
dict a continuous transition, and renormalization-group
arguments suggest that the transition is first order [50].
Computer simulations disagree in their predictions of the
transition order. A continuous transition was found in
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a recent simulation [51] (a review of earlier simulations
can be found in the cited paper). It should be noted that
the above molecular models and computer simulations
were all developed for molecules on a hexagonal lattice,
so that they are only appropriate for phase transitions be-
tween hexagonal and herringbone-ordered crystals. The
case of translational freedom appropriate for molecules
in mesophases was not analyzed.

Thermal fluctuations are well known to play an essen-
tial role in 2D systems. In particular, fluctuations destroy
the one-dimensional translational order of the phases of
Figs. 2(e) and 2(f) for large separations. The coeflicients
in the free energy expansions can vary considerably on
renormalization, probably changing the transition orders.
A renormalization-group analysis of the transitions be-
tween tilted hexatic phases was performed in [35,36]. In
the notation of the present paper, the long-range renor-
malization of the coefficients D and F in the expansion
(2) was described completely. A renormalization analy-
sis of the free energy expansion (13) for the herringbone-
ordering transition has not yet been performed. Renor-
malization analysis of the expansion (27) involving three
order parameters seems an extremely complicated prob-
lem.

The hexatic phase was first introduced in the theory of
dislocation-mediated melting in two dimensions [52] as a
2D crystal translationally disordered by interacting dis-
locations in thermodynamic equilibrium which preserve
the quasi-long-range order of bond orientations. Consid-
ering the phase transitions in Langmuir monolayers from
the standpoint of the dislocation melting theory, it is
necessary to start from the orthorhombic 2D crystalline
C'S phase. Two types of melting of an anisotropic crys-
tal are possible, depending on the relationship between
its elastic moduli, either to a 1D crystal phase (“type-
I” melting) or to an anisotropic hexatic phase (“type-II”
melting) [53]. The one-dimensional crystalline order aris-
ing from type-I melting exists on an intermediate length
scale but is destroyed by fluctuations at long range. In
this phase only one set of dislocations with Burgers vec-
tors parallel to each other is essential. The crystallization
direction is normal to the bonds and the resulting phase
is quite similar to the phase of Fig. 2(f) in the Landau
theory. However, the other 1D crystal phase of the Lan-
dau theory, whose crystallization wave vector lies along
the bonds as shown in Fig. 2(e), does not follow from the
dislocation melting theory. In addition, type-II melting
does not have an analog in the Landau theory, accord-
ing to which direct transitions between a hexatic phase
and a herringbone-ordered crystal are not allowed. The
intermediate phase is either the 1D crystal of Figs. 2(e)
and 2(f) or the hexagonal crystal of Fig. 2(h). It is worth
noting that the phase sequence observed in liquid crystals
with decreasing temperature is stacked hexatic (smectic
BH) — hexagonal crystal (smectic BC) — herringbone-
ordered crystal (smectic F) [21].

Some phases observed in monolayers of amphiphiles are
not contained on the phase diagram of Fig. 1(a). In fatty
acid monolayers at very high pH, an orthorhombic phase
(called the “X phase”) was observed. Its cell aspect ra-
tio (distortion £ in the notation of the present paper) was
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quite different from the value of the S phase [16]. The
same aspect ratio was reported for fatty acid monolayers
deposited on a solid substrate [54,55]. This phase can
probably be interpreted as the phase of Fig. 2(b). Ther-
modynamic and structural data are not complete enough
to make a definite conclusion. A hexagonal crystal phase
corresponding to the one of Fig. 2(g) was observed for
short fatty acid alcohols at the air-water interface [56]
and for the surface monolayer of liquid normal alkanes
[57]. The relationship of the former phase to the phases
of long fatty alcohols [18] and long fatty acids was not
investigated. A phase transition line separating the L)
phase of Fig. 1(a) into two subphases was found by sur-
face pressure-area isotherm measurements in a fatty acid
[6]. A similar transition was reported recently for a fatty
alcohol [39]. However, diffraction experiments did not
reveal a discontinuity in the tilt angle or distortion. Al-
though the experimental data are clearly not sufficient for
any definite conclusion, one can speculate that the tran-
sition is probably due to ordering of the only remaining
molecular degree of freedom, the orientation of the heads
of the molecules. Such orientation is described by a vec-
tor lying in the surface plane, i.e., by the same type of
order parameter as the collective tilt. In that case an
isostructural transition within the L), phase is possible.

Let us discuss now the choice of the order parameters
in the present theory. The high-temperature condensed
phase LS is described as the hexatic phase and the low-
temperature phase C'S as the herringbone-ordered crys-
tal. Although there is no direct experimental evidence
for hexatic order in the LS phase, it is commonly iden-
tified as hexatic due to its diffraction pattern, which
contains only one (triply degenerate) broad peak. The
identification of the CS phase as crystalline is based
on its resolution-limited diffraction peaks, indicative of
a correlation length greater than 160 lattice spacings,
while the unit cell parameters coincide with those of the
herringbone-ordered phase of bulk paraffins [14].

The Landau theory does not allow a direct transition
from a hexatic phase to a herringbone-ordered crystal.
The system must pass through either a 1D crystal of
Figs. 2(e) and 2(f) or the hexagonal crystal of Fig. 2(g).
The observed intermediate phase S possesses two broad
diffraction peaks, which rules out both the hexagonal
crystal and the phase of Fig. 2(f) with sharp nondegen-
erate and broad doubly degenerate peaks. The only pos-
sibility which can be identified as the S phase is the 1D
crystal phase of Fig. 2(e), whose first-order diffraction
peaks are expected to be broad, and the order parameter
@ is the only one which could possibly explain the L.S-
S transition. However, there are two order parameters
possible for transition S-CS, namely, one-dimensional
crystallization in the orthogonal direction over the or-
der parameter 1, as proposed in the present paper, and
crystallization over the density wave p. In the latter case
crystallization over p occurs in the phase already ordered
with respect to ¢ and a herringbone-ordered crystal re-
sults instead of the hexagonal crystal which would appear
on direct transition over p from the hexatic phase. The
order parameter ¢ was chosen in the present paper be-
cause it explains the whole phase diagram of Fig. 1 in
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terms of only three order parameters.

Experimental evidence in favor of the order parame-
ter 1 for the L,j, phase is the considerable (3-5 times
[14]) difference in the widths of the diffraction peaks in
that phase, as is expected for the 1D crystal of Fig. 2(f).
This means that the L, phase must be subdivided into
two phases Ly, and Log4, herringbone ordered and dis-
ordered, respectively. A transition between these phases
possessing different symmetries has not yet been found
experimentally. Another possible description of the L)-
L, transition is ordering of the backbone planes parallel
to each other due to the order parameter £. On this in-
terpretation the phases Ly, and Lag would possess the
same symmetry, since the distortion £ in the latter phase
is induced by tilt. The phase transition line Lop-Log can
terminate at a critical point in that case, thus explain-
ing the absence of the transition line in the experiment.
However, a description of the transitions requires higher-
order terms in the free energy expansion. In particular,
the coupling term (5) between 1 and £ requires the same
direction of distortions in phases Lop and Log possessing
the same tilt azimuth. In contrast, the unit cell stretches
in the tilt direction to the NN in the L4 phase [58] and
shrinks in this direction just below the Lj-Lop transi-
tion [14]. One can introduce a higher-order anisotropic
invariant £2n? cos(2a + 203) to explain this behavior, but
the theoretical analysis becomes much less definite. More
detailed experimental data are required to determine un-
ambiguously the order parameters for all transitions. The
choice has to be made from the order parameters listed
in Fig. 2 where all types of ordering of the hexatic phase
allowed by the Landau theory are shown. One can ex-
pect that the transitions to the hexagonal crystal phase of
short-chain-length fatty alcohols and the X phase of long-
chain fatty acids described above can also be described
with the order parameters of Fig. 2 and couplings be-
tween them, when additional thermodynamic and struc-
tural data become available.

V. CONCLUSION

Phase transitions between condensed phases of Lang-
muir monolayers are due to two of the degrees of freedom
of long-chain molecules: the change of orientation of their
long axes causes tilting phase transitions at decreasing
surface pressure and the herringbone ordering of their
short axes (backbone planes) gives rise to crystallization
phase transitions with decreasing temperature. Crystal-
lization occurs in two stages via intermediate 1D crystal
phases. The couplings between the tilt order parameter
and the two order parameters responsible for successive
crystallization are sufficient to describe the phase dia-
gram of Langmuir monolayers consisting of eight struc-
turally distinct phases. The present theory describes
the upright and tilted hexatic phases at high temper-
atures, the upright 1D herringbone-ordered crystal and
two tilted ones differing in their directions of both tilt and
crystallization at intermediate temperatures, and the up-
right and tilted 2D crystals at low temperatures. Some
other structures which are possible in Langmuir mono-
layers can be found in the list, derived in the paper, of
all possible ways of ordering of the hexatic phase allowed
in the framework of the Landau theory.
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